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Abstract. We consider the most general loop integral that appears in non-relativistic effective
field theories with no light particles. The divergences of this integral are in correspondence with
simple poles in the space of complex space–time dimensions. Integrals related to the original
integral by subtraction of one or more poles in dimensions other thanD = 4 lead to non-minimal
subtraction schemes. Subtraction of all poles in correspondence with ultraviolet divergences of
the loop integral leads naturally to a regularization scheme which is precisely equivalent to cut-off
regularization. We therefore recover cut-off regularization from dimensional regularization with a
non-minimal subtraction scheme. We then discuss the power counting for non-relativistic effective
field theories which arises in these alternative schemes.

1. Divergent integrals in non-relativistic effective field theories

Effective field theories of non-relativistic scattering have been a subject of much interest
recently. These field theories have applications in many branches of physics. They are useful
in analysing a system with widely separated energy scales. For instance, to describe two-body
scattering at momenta considerably lower than the mass of any exchanged particle an effective
field theory can be written in which all of the exchanged particles are ‘integrated out’ of the
original field theory Lagrangian. In the low-energy effective theory the effects of these ‘heavy’
degrees of freedom are represented by an expansion of the interaction Lagrangian as a sequence
of local operators of increasing dimension. This low-energy effective theory can then be used
to calculate non-relativistic scattering in the system of interest.

In pursuing such a calculation one encounters divergences. These divergences must be
regulated and renormalized before physical quantities can be calculated. Here we consider the
most general loop integral appearing in a low-energy effective field theory (EFT) description
of non-relativistic scattering. We regularize this integral using the standard technique of
dimensional regularization (DR). Within the framework of DR, we identify the poles as
a function of the number of space–time dimensions that correspond to the divergences of
this integral. This allows us to clarify the relation between DR-based schemes and cut-off
regularization. We also demonstrate explicitly how the power counting for the coefficients
appearing in the non-relativistic effective theory Lagrangian is affected by the choice of
regulator.
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Consider a non-relativistic effective field theory for the interaction of two identical heavy
particles of massM. If no exchanged degrees of freedom appear explicitly in the Lagrangian
then we can immediately write:

L = ψ†i∂tψ +ψ† ∇2

2M
ψ − 1

2
C0(ψ

†ψ)2 − 1

2
C2(ψ

†∇2ψ)(ψ†ψ) + h.c. + · · · (1)

where the dots refer to other invariants with two or more derivatives. Of course, without a
power-counting scheme this Lagrangian is useless, since there are infinitely many interaction
terms consistent with assumed symmetries. A power-counting scheme must be established
which allows us to keep only a finite number of operators at a given order in the gradient
expansion. Unless this is done the effective field theory will have no predictive power, as an
infinite number of coefficients will enter the calculation.

We can formally write the all-orders solution of the low-energy effective theory by
constructing the non-relativistic potential

V (p̂) =
∞∑
n=0

C2np̂
2n (2)

directly from the Lagrangian. Herêp is to be understood as an operator, which may denote
momentum or energy dependence. More explicitly, this potential is

V (k′,k;E) =
∞∑
n=0

n∑
i=1

∑
j

C
(i,j)

2n p2(n−i)Oij (k′,k) (3)

wherep2 = ME and the indexj enumerates members of the set of all operators of dimension
2i which are consistent with hermiticity and rotational invariance. In the case of s-wave
scattering, the operators that contribute are

Oij = k2j k′2(i−j) + k2(i−j)k′2j (4)

although, as we shall see, these details of the construction of the potential are not necessary
for our discussions here. Note that the potentialV contains only terms that are analytic in the
momentak, k′ andp. This is because in writing the effective Lagrangian (1) we have made
local expansions of any non-analytic structures which appear in the ‘full’ theory. Therefore, the
only non-analytic effects in this low-energy effective theory come from solving the Schrödinger
equation. The effective theory is therefore only valid for energies well below the masses or
production thresholds of any exchanged particles.

The potentialV is then iterated via the Lippmann–Schwinger equation

T (k′, k;E) = V (k′, k;E) +M
∫

d3q

(2π)3
V (k′, q;E) 1

EM − q2 + iη
T (q, k;E) (5)

to give the on-shell scattering amplitudeT (p, p;E), with p = √ME. All observables in the
ψψ system can be obtained from this amplitude. In the language of Feynman diagrams, the
Lippmann–Schwinger equation generates the sum of all graphs, as illustrated in figure 1.

+ + ...+

Figure 1. The diagrammatic solution of the Lippmann–Schwinger equation with the effective
potential represented by the shaded area.
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It immediately follows from equation (5) that divergent integrals will accompany every
loop computed in the effective field theory. This means that theC2n coefficients must
be renormalized, and therefore are renormalization scheme dependent. Since the scaling
behaviour of theC2n coefficients determines which operators are big and which are small in
the effective theory, this means that the power counting scheme will look different in different
regularization schemes.

In what follows we will consider the most general divergent integral that appears in the
effective theory. In section 2 we will explore the many possible definitions of the divergent
integral in dimensional regularization, and then in section 3 discuss the power counting for the
coefficientsC2n that arise from these definitions.

The most general form of the divergent integral which appears in the effective theory is

In(µ) =
(µ

2

)4−D
M

∫
d(D−1)q

(2π)D−1

q2n

ME+ − q2
(6)

whereD is the number of space–time dimensions,µ is a renormalization scale, andE+ = E+iη,
with η a positive infinitesimal, is the energy. Intuition about this integral may be gained by
evaluating with a sharp cut-offβ. InD = 4 this gives

In(β) = M
∫

d3q

(2π)3
q2n

ME+ − q2
= M

2π2

∫ β

0
dq

q2n+2

ME+ − q2
. (7)

The imaginary part is, of course, regularization scheme invariant. Meanwhile, the real, or
principal value, part is given by

ReIn(β) = − M

2π2

(
p2nβ +

β3

3
p2n−2 + · · · + β2n+1

2n + 1

)
+ p2n Mp

4π2
log

(
β + p

β − p
)

(8)

provided thatβ2 > p2. It is clear that the integral of interest is ultraviolet power-law divergent
atD = 4. The maximum power of the cut-off which appears is just the superficial degree of
divergence of the graph, 2n + 1.

Using the usual techniques employed in calculating dimensionally regularized integrals in
an arbitrary number of dimensions (see, for instance, appendix B of Ramond [1]), the integral
(6) may be re-expressed as,

In(µ) = −
(µ

2

)4−D M

(4π)(D−1)/2

0( 2n+D−1
2 )

0(D−1
2 )

(−ME)(2n+D−3)/20

(
3−D − 2n

2

)
(9)

provided thatE < 0. This equality is valid in a region of the complexD-plane defined by

1− 2n < D < 3− 2n and D > 1. (10)

The first inequality is easy to understand from equation (6) using simple power counting
arguments. The conditionD > 1−2n ensures that integral is free of infrared divergences and
the conditionD < 3−2n ensures that the integral is free of ultraviolet divergences. According
to equation (9), in the complexD-plane (see figure 2) these divergences manifest themselves
as singularities of the gamma functions in the corresponding regions. The conditionD > 1
follows from requiring that the space–time measure be infrared safe.

The two conditions of equation (10) are incompatible forn > 0. Thus, in fact, to properly
calculate the integral (6) we must do the angular integration inD = 4, and then consider the
result of varying the number of dimensions in which the ‘radial’ integration is performed. This
technique leads to the result:

In(µ) = −
(µ

2

)4−D M

(4π)3/2
0( 2n+D−1

2 )

0( 3
2)

(−ME)(2n+D−3)/20

(
3−D − 2n

2

)
(11)
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-1-2n

1-2n 3-2n

5-2n 1 3 5-3-2n

Figure 2. The complexD-plane. The integralIn(µ) is given by equation (11) within the shaded
region of theD-plane. Poles are represented by crosses.

which is valid for

1− 2n < D < 3− 2n (12)

andE < 0. If we are interested in scattering problems in four space–time dimensions we
must now perform two analytic continuations: one in the energyE and one in the number
of dimensionsD. Performing the analytic continuation inE first, by using the evaluation at
E + iη, rather thanE itself, we find that forE > 0

In(µ) = − M

4π2

(µ
2

)4−D
(−ME)n(−ME+)(D−3)/20

(
2n +D − 1

2

)
0

(
3−D − 2n

2

)
(13)

provided that 1− 2n < D < 3− 2n. The following discussion makes extensive use of this
result.

The usual dimensional regularization prescription for calculation of the integralIn in
dimensions where the expression (13) is not valid is to define a new functionĨn(µ)which agrees
with the originalIn(µ) in the region 1− 2n < D < 3− 2n, but isdefined by equation (13)in
the rest of the complexD-plane. Forthis Ĩn we may use the Gamma function identity,

0(n + a)0(1− a − n) = 0(a)0(1− a)(−1)n (14)

to obtain

Ĩn(µ) = − M

4π2

(µ
2

)4−D
(ME)n(−ME+)(D−3)/20

(
D − 1

2

)
0

(
3−D

2

)
(15)

which is correct for allD except odd integers. This expression differs from that of [2,3] by a
factor due to the way the angular integration was performed. Note that if the identity (14) is
applied directly to equation (9), then the result of [2,3] forĨn(µ) is recovered.

2. Subtraction schemes and the divergent integral

In D = 4 equation (15) yields the result of [4]:

Ĩn(µ) = −p2n iMp

4π
(16)

wherep = √ME. The regularization scheme corresponding to equation (15) with removal
of any poles at the critical dimension is, by convention, minimal subtraction. Of course, there
are no poles in the dimension of interest to us,D = 4, and so only the imaginary part of the
integral survives in minimal subtraction.
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The expression (13) has poles atD = 1−2n,−1−2n, . . . ,D = 3−2n, 5−2n, 7−2n, . . . .
The former lie below the region of analyticity of̃In (see figure 2), and can be considered as
infrared divergences that arise whenIn is evaluated in such dimensions. Conversely, the
latter poles can be considered ultraviolet divergences ofĨn. Some of them lie between the
region of analyticity and the critical dimensionD = 4 which we wish to analytically continue
to. In the rest of this paper we follow a suggestion of Kaplanet al [2, 3] and consider
the effects of cancelling out poles of0( 3−D−2n

2 ) (ultraviolet singularities) and0( 2n+D−1
2 )

(infrared singularities) in the integral̃In. This procedure leads to regularization schemes
which differ from the standard dimensional regularization with minimal subtraction result
of [4], equation (16).

Of course, after renormalization the on-shell piece of the amplitudeT calculated via
equation (5) is necessarily the same in any scheme. Otherwise one of the basic tenets of
effective field theory, insensitivity to short-distance physics, is violated. So we must ultimately
get the same physical result regardless of how many poles we subtract†. This equivalence after
renormalization is enforced by making appropriate choices for the coefficientsC2n. Thus, the
behaviour of the coefficients, and hence the power counting for these coefficients, is affected
by the scheme we use to defineĨn. As we will show in the next section some schemes are
more useful for reproducing certain physics in the effective theory.

Consider first the Gamma function poles corresponding to ultraviolet divergences in cut-
off regularization. WhenD is close to 3− 2m, withm > 0, the poles of0( 3−D−2n

2 ) between
D = 3− 2n andD = 4 have the structure

M

4π2

µ2m+1

22m
p2(n−m) 1

D − 3 + 2m
. (17)

Thus we can cancel these poles out by defining,

Ĩ new
n ≡ Ĩn(µ)− M

2π2

n∑
m=0

(µ
2

)2m+1
p2(n−m) 1

D − 3 + 2m
(18)

whereĨn(µ) is given by expression (13).
Similarly, to cancel the poles of0( 3−D−2n

2 ) in D > 4 dimensions we must add a term

M

2π2

∞∑
m=1

p2(n+m)
(µ

2

)1−2m 1

2m + 3−D. (19)

Thus if we wish to cancel all poles of the expression (13) for dimensionsD > 3−2nwe must
define

Ĩ uvPDS
n ≡ Ĩn(µ)− M

2π2

n∑
m=−∞

(µ
2

)2m+1
p2(n−m) 1

D − 3 + 2m
. (20)

This subtracts the poles which correspond to ultraviolet divergences forD > 3−2n. We refer
to the resulting regularization scheme as dimensional regularization with ultraviolet power-law
divergence subtraction (uvPDS).

It is now a straightforward matter to show that uvPDS is precisely equivalent to cut-off
regularization inD = 4. For the pieces of the sum withm > 0 we find

− M

2π2

n∑
m=0

(µ
2

)2m+1
p2(n−m) 1

1 + 2m

= − M

2π2

[(µ
2

)
p2n +

(µ
2

)3 p2n−2

3
+ · · · +

(µ
2

)2n+1 1

2n + 1

]
(21)

† This point has been stressed in the context of effective field theories of the nucleon–nucleon interaction by van
Kolck [5].
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and for the pieces which arise from poles inD > 4 it follows from the observation that

M

2π2

∞∑
m=1

p2m
(µ

2

)−2m+1 1

2m− 1
= Mp

4π2
log

(
µ/2 +p

µ/2− p
)

(22)

provided thatp is kept less thanµ/2. It is clear that if we identifyβ = µ/2, then inD = 4
Ĩ new
n in uvPDS is precisely equivalent to the cut-off result of equation (8).

3. Scaling of effective field theory coefficients

The choice of̃In made by Kaplanet al, known as power-law divergence subtraction (PDS) is to
cancel the pole of expression (15) inD = 3 for alln [2,3]. Of course, as we have seen the PDS
scheme is only one of a much more general class of definitions of the integralĨn. Kaplanet al’s
main motivation in considering the PDS scheme was to produce a consistent power counting in
non-relativistic effective theories where there is an unnaturally large scattering length. Much
blood, sweat, and ink has been spilt over this problem during the past few years [2–26]. The
PDS approach to this difficulty is elegant, and leads to good power counting for the coefficients
in the low-energy Lagrangian. Here we show that in fact PDS is the simplest scheme of this
type which leads to good power-counting for the bare coefficientsC2n. It has been shown
how to obtain similar power-counting for the on-shell T-matrix within the framework of any
regularization scheme [5, 18]. However, [5, 18] do not address the issue of the scaling of the
coefficients in the bare EFT Lagrangian. The power counting of [2, 3, 5, 18] has also been
derived within the framework of the Wilsonian renormalization group [21].

3.1. Review of coefficient scaling with the PDS definition of the divergent integral

The PDS choice is to retain only them = 0 term of the sum (20). This corresponds to the
linear divergence in the cut-off approach. The integralĨn is defined to be (throughout this
section we work inD = 4):

ĨPDS
n = −p2n M

4π

(
ip +

µ

π

)
(23)

where our result for the second term differs by a factor ofπ from that of [2, 3] because the
angular integration was performed inD = 4 rather thanD = 3.

This definition of Ĩn leads to a straightforward solution of the Lippmann–Schwinger
equation, (5):

1

T on(p)
= 1∑∞

n=0C2np2n
+
Mµ

4π2
+

iMp

4π
. (24)

Now, we attempt to match this to a form of the inverse amplitude which corresponds to the
presence of an unnaturally large scattering length

1

T on(p)
= −M

4π

(
−1

a
+

1

2
rep

2 + O(p4)− ip

)
(25)

with 1/a � 30, andre ∼ 1/30, where30 is the ‘natural’ scale set by the theory underlying
the low-energy effective theory. Matching expressions (24) and (25) for30 > p > 1/a it is
straightforward to deduce [2,3] that the coefficients scale as

C0 ∼ 1

Mµ
C2n ∼ 1

Mµn+13n
0

(26)

provided that the scaleµ is kept greater than, or of the order of, the scale 1/a. As pointed out
by Kaplanet al we may now choose the scaleµ to be of orderp.
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With this choice all loops involving the operatorC0 are of the same order and so the operator
C0(ψ

†ψ)2 must be treated non-perturbatively. This power counting can be understood from
the viewpoint of the renormalization group [3, 21] as an expansion around a non-trivial IR
fixed point. This fixed point describes systems with a bound state at exactly zero energy. In
the PDS scheme, the potential at the fixed point is independent of energy or momentum and
scales like 1/µ, as in equation (26).

From equation (26) we see that the effects of the operatorsC2np̂
2n are suppressed by a factor

(p/30)
n relative to the non-perturbative effects of the dimension-six operator. Therefore, these

higher-dimensional operators may be treated perturbatively. Hence we can re-expand the first
term in equation (24) in the form

1∑∞
n=0C2np2n

= 1

C0
− C2

C2
0

p2 +

[(
C2

C2
0

)2

− C4

C2
0

]
p4 + · · · . (27)

The effective range expansion (25) can then be reproduced to any desired order in thisp/30

expansion.
In an RG approach the coefficients in the effective range expansion are in one-to-one

correspondence with the coefficients of the RG eigenfunctions in the expansion of the potential
around the fixed point. These coefficients scale with definite powers of the renormalization
scaleµ in the PDS scheme or the cut-off in a Wilsonian approach [21]. Although the scaling
behaviour is the same in the two approaches, the detailed form of the potential is not: the
fixed-point and RG eigenfunctions all have a more complicated energy dependence when a
cut-off is used.

3.2. Scaling in PDS in a natural theory

Note that in a natural theory, where 1/a ∼ 30, matching (25) to (24) in fact yields

C2n ∼ 1

M32n+1
0

(28)

provided only thatµ < 30. Since the scaleµ does not enter these scaling relations we are
free to chooseµ = 0, which is, of course, the choice of minimal subtraction. Howeverµ 6= 0
with p ∼ µ is also a choice that leads to good power counting, Clearly the tree-level effects
of the operatorsC2n are suppressed by a power(p/30)

2n. Moreover, the effect of a loop
with superficial degree of divergence 2n + 1 is down by a factor of(p/30)

2n+1, relative to
the tree-levelC0. Thus in the natural theory there is no need to treat the effects ofC0 non-
perturbatively, and the effects of higher-derivative operators are more strongly suppressed than
in the unnatural case.

3.3. Scaling in uvPDS

We can now deduce the effect of modifying the definition ofĨn by adding the terms form = 1
tom = n which appear in equation (20). Recall that if a cut-off regulator is used these terms
correspond to cubic and higher power-law divergences. Attempting to solve the theory exactly,
as was done above for the PDS subtraction, becomes much more complicated (see [15,16,22]
for examples), as each integralĨn has a different number of subtractions. This complexity
gives rise to nonlinear relations between the bare and renormalized coefficients. However, the
crucial point in any such attempt is that if we keep the scaleµwell below the scale30 then the
effect of all power-law divergences will be suppressed by powers ofµ/30, and so they make
no change to the scaling of coefficients quoted above. For instance, if we examine a loop as
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2(n-l)
2(n-l) 2l

2l Figure 3. Characteristic loop graph.

shown in figure 3 with one insertion ofC2(n−l) and one ofC2l then, considering for the present
only the pieces of the sum in equation (20) corresponding to power-law divergences of degree
three and above, the loop becomes

C2(n−l)C2l
M

2π2

n∑
m=1

(µ
2

)2m+1
p2(n−m) 1

1 + 2m
. (29)

Given the scaling above for the coefficientsC2j themth term here produces scaling of the
coefficientC2(n−m) of the form

C2(n−m) ∼ 1

Mµn−2m+13n
0

. (30)

Compared with the leading scaling of this coefficientC2(n−m) ∼ 1/(Mµn−m+13n−m
0 ) the

scaling (30) is suppressed by a factor of(µ/30)
m. Thus, even if the terms in equation (20)

which correspond to power-law divergences of higher degree than those considered in PDS
were included they would not modify the PDS scaling (26).

In contrast, the terms arising from poles inD = 5 and above, which sum up to produce
the logarithm of equation (22),wouldmodify the PDS scaling (26) if they were included in the
definition of Ĩn. To see this let us only retain the terms of the sum in equation (20) form 6 0.
Then

Ĩn = −p2n M

4π

(
ip +

µ

π
− 1

π
log

(
µ + 2p

µ− 2p

))
(31)

so solving the Lippmann–Schwinger equation gives

1

T on(p)
= 1∑∞

n=0C2np2n
+
Mµ

4π2
− Mp

4π2
log

(
µ + 2p

µ− 2p

)
+

iMp

4π
. (32)

Expanding out the log in powers ofp/µ it is straightforward to see that matching to the
expression (25) requires

C2n = 1

Mµ2n+1
. (33)

This, of course, is the same scaling one would expect in a cut-off theory in which the cut-off
was kept below the scale30 [11,17].

Now, if the coefficients do scale in this way then for momentap ∼ µ the effect of
the higher-derivative operatorsC2np

2n is not suppressed relative to that of the ‘lowest-order’
operatorC0. Thus if uvPDS is used to regulate the divergent loop integral the resulting power
counting for theC is such that one cannot justify any truncation of the sum over all higher-
derivative operators. Consequently, we conclude that the choice (20) does not lead to good
power counting for the coefficientsC2n.

The physical reason this occurs is that the inclusion of terms that contain negative powers
of µ in the definition of the integral̃I uvPDS

n introduces energy dependence in the amplitude at
scaleµ. Sinceµ is much less than the natural scale of energy dependence30, this energy
dependence is unnaturally rapid. It must be cancelled by using larger values of the coefficients
C2n. In fact as shown in [21], this occurs automatically within an RG treatment where the
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unnatural energy dependence is absorbed into the forms of the fixed-point potential and the
RG eigenfunctions for the expansion around it. In our case we would have the fixed-point
potential

V (p) =
(
−Mµ

4π2
+
Mp

4π2
log

(
µ + 2p

µ− 2p

))−1

. (34)

If this potential is iterated via the Lippmann–Schwinger equation and uvPDS (which we have
already shown is equivalent to a cut-off) applied to define the divergent integral then all the
spurious energy dependence introduced by the terms in the sum forĨn with negative powers
of µ are cancelled. The analysis given here shows that this is essentially equivalent to just
ignoring the effects of the poles inD > 5 which lead to logarithmic behaviour in the inverse
amplitude altogether.

One difference between uvPDS (or a cut-off) and PDSà la KSW is that it distinguishes
between energy and momentum dependence in the potential. The RG eigenfunctions that
correspond to the terms in the effective range expansion are purely energy dependent [21].
Ultimately they can be thought of a terms in an energy-dependent pseudopotential that acts as
an energy-dependent boundary condition on the wavefunction at the origin [5,21]. There are
in addition momentum-dependent eigenfunctions with different scaling behaviours, but these
do not contribute to the on-shell scattering amplitude.

4. Summary

The integralĨn is a key ingredient of non-relativistic effective field theories in general, and EFTs
of the nucleon–nucleon interaction in particular. Since this integral has infinitely many poles in
the complex space of dimensions there are infinitely many ways to define it, depending on how
many of these poles we choose to subtract in our redefinedĨn. The original suggestion of [2]
which removes the pole atD = 3 therefore exists amidst myriad alternative schemes. The
alternative corresponding to removingall of the poles which arise due to ultraviolet divergences
of Ĩn exactly reproduces the result obtained by simply regulatingIn via a cut-off.

We have also analysed the way that coefficients in the effective field theory Lagrangian
scale in regularization schemes using these more general definitions ofĨn. This analysis shows
that, in the presence of an unnaturally large scattering length, PDS is the simplest definition
of a subtracted̃In which leads to good power counting for the coefficients that appear in the
effective field theory Lagrangian.
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Appendix A. ‘Maximal’ subtraction

Here we consider the role played by the poles inD < 1− 2n. As mentioned above, these
correspond to infrared singularities of the original integrand. Since the integral of interest
has no infrared divergences inD = 4, this discussion is not particularly relevant to nature.
However, it leads to an intriguing result, and so we present it in this appendix.
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To cancel the poles of0( 2n+D−1
2 ) in D < 1− 2n dimensions we must add a term

− M

2π2

∞∑
m=n+1

(µ
2

)2m+1
p2(n−m) 1

D − 3 + 2m
. (35)

We can then define a scheme which we call maximal subtraction, that subtractsall poles in the
complexD-plane:

Ĩ all
n ≡ Ĩn(µ)−

M

2π2

∞∑
m=−∞

(µ
2

)2m+1
p2(n−m) 1

D − 3 + 2m
(36)

in all dimensionsD in the complexD-plane. We now specialize to the caseD = 4.
The sum in equation (36) is divergent for any value of the momentump. In order to define

a sum for this series we first define the functionf (p) via

f (p) = − M

2π2

∞∑
m=0

(µ
2

)2m+1
p2(n−m) 1

2m + 1
. (37)

If µ/2< p then this series may be summed to yield

f (p) = −Mp
4π2

p2n log

(
p +µ/2

p − µ/2
)
. (38)

In the region of the complexp-plane,µ/2 < |p| < R, with R some large real number, this
function is an analytic function ofp. Hence we can define a functioñf (p)which is the analytic
continuation off (p) into the region 06 |p| < R. We make the analytic continuation

f̃ (p) = −Mp
4π2

p2n log

(∣∣∣∣ p +µ/2

p − µ/2
∣∣∣∣) + p2n iMp

4π
. (39)

We now defineĨMaxS
n to be the result found if the sum over positivem in equation (36) is

replaced by its analytic continuatioñf , thus:

ĨMaxS
n = Ĩn(µ) + p2n iMp

4π
. (40)

Taking the limitD→ 4 and evaluating the (finite) integralĨn(µ) implies

ĨMaxS
n = 0. (41)

By subtracting all the poles in the complexD-plane we have forced a definition of the value
of the divergent integralIn which gives zero.
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